
ORIGINAL RESEARCH ARTICLE
published: 22 June 2012

doi: 10.3389/fpsyg.2012.00203

Tuned with a tune: talker normalization via general
auditory processes
Erika J. C. Laing1, Ran Liu2, Andrew J. Lotto3 and Lori L. Holt 2*
1 Brain Mapping Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
2 Department of Psychology, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
3 Speech, Language and Hearing Sciences, University of Arizona, Tucson, AZ, USA

Edited by:
Josef P. Rauschecker, Georgetown
University School of Medicine, USA

Reviewed by:
Iiro P. Jääskeläinen, University of
Helsinki, Finland
Elia Formisano, Maastricht University,
Netherlands
Maria Chait, University College
London, UK

*Correspondence:
Lori L. Holt , Department of
Psychology, Carnegie Mellon
University, Baker Hall 254K, 5000
Forbes Avenue, Pittsburgh, PA 15213,
USA.
e-mail: lholt@andrew.cmu.edu

Voices have unique acoustic signatures, contributing to the acoustic variability listeners
must contend with in perceiving speech, and it has long been proposed that listeners nor-
malize speech perception to information extracted from a talker’s speech. Initial attempts to
explain talker normalization relied on extraction of articulatory referents, but recent studies
of context-dependent auditory perception suggest that general auditory referents such as
the long-term average spectrum (LTAS) of a talker’s speech similarly affect speech percep-
tion.The present study aimed to differentiate the contributions of articulatory/linguistic ver-
sus auditory referents for context-driven talker normalization effects and, more specifically,
to identify the specific constraints under which such contexts impact speech perception.
Synthesized sentences manipulated to sound like different talkers influenced categoriza-
tion of a subsequent speech target only when differences in the sentences’ LTAS were in
the frequency range of the acoustic cues relevant for the target phonemic contrast. This
effect was true both for speech targets preceded by spoken sentence contexts and for
targets preceded by non-speech tone sequences that were LTAS-matched to the spoken
sentence contexts. Specific LTAS characteristics, rather than perceived talker, predicted
the results suggesting that general auditory mechanisms play an important role in effects
considered to be instances of perceptual talker normalization.
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INTRODUCTION
A long-standing, core theoretical problem in understanding
speech perception is the lack of a one-to-one mapping between
acoustic input and intended linguistic categories (Liberman et al.,
1967). One major source of this lack of invariance is acoustic vari-
ation across talkers who differ in vocal tract size and anatomy, age,
gender, dialect, and idiosyncratic speech mannerisms (Johnson
et al., 1993). This results in substantially different acoustic realiza-
tions of the same linguistic unit (e.g., Peterson and Barney, 1952).
Yet, human listeners maintain remarkably accurate speech percep-
tion across an unlimited number of communication partners, even
without having extensive experience with the talker. The mecha-
nisms by which speech perception accommodates talker variability
have been a central issue since the inception of the field (Potter
and Steinberg, 1950), but they are poorly understood. This is evi-
dent in the fact that even the most advanced computerized speech
recognition systems require substantial talker-specific training to
achieve high accuracy.

The problem, however, is not unconstrained – a change
in vocal tract anatomy or vocal fold physiology changes the
acoustic signature systematically. For example, adult women tend
to have shorter and differently proportioned vocal tracts than
adult males. As a result, female-produced vowels have formant
frequencies (peaks in energy of a voice spectrum; Fant, 1960)
shifted to higher frequencies relative to males’. It would seem
likely that effective listeners make use of these regularities in

acoustic variation to achieve more accurate and efficient speech
categorization.

One early demonstration of talker-dependent speech catego-
rization was made by Ladefoged and Broadbent (1957), who pre-
sented listeners with a constant target word (a relatively ambiguous
vowel in a /b_t/ frame) at the end of a context phrase (Please
say what this word is. . .). The acoustic characteristics of the con-
text phrase were manipulated by raising or lowering the first (F1)
and/or second (F2) formant frequencies of the vowels. Shifting for-
mant frequencies up and down can be roughly conceptualized as a
decrease or increase in vocal tract length and, correspondingly, as
a change in talker. When these phrases preceded a constant speech
target, categorization of the vowel in the target word shifted as a
function of the context phrase, suggesting that listeners compen-
sate for vocal tract differences across talkers. The target was more
often heard as “bit ” following a higher formant frequency phrase
(as might be produced by a shorter vocal tract), but more often
as “bet ” following the phrase with the lower formant frequencies.
These classic results suggest that listeners extract some type of
talker information from the context phrase and use it in perceiv-
ing the target word. The critical question, then, is: What type of
information is extracted from the context phrase?

One possibility is that listeners construct an explicit represen-
tation of the talker-specific phonemic sound patterns produced
by the talker, which could serve as a reference for subsequent
speech perception. When an ambiguous vowel is encountered in
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the target word, the relative position of the formant frequencies
in the remapped vowel space could reveal the intended vowel.
Thus, talker-specific, speech-specific information gathered during
the carrier phrase might tune speech perception to talker-specific
patterns (Joos, 1948; Ladefoged and Broadbent, 1957).

Alternatively, listeners may estimate talker-specific vocal tract
dimensions. Recent work by Story (2005) examining vocal tract
shapes across talkers using magnetic resonance images reveals that
most inter-talker variability is captured by the shape of the neutral,
non-articulating vocal tract shape that, when excited by vocal fold
vibration, results in a neutral schwa sound as in the second vowel
of sofa. If one subtracts a talker’s neutral vocal tract shape from
other vowel vocal tract shapes, the resulting vocal air space shape
for various vowels is quite consistent across talkers. Thus, esti-
mating the neutral vocal tract shape of the talker from the carrier
phrase and using this estimate to normalize the vocal tract shape
determined for the target vowel might tune speech perception to
talker-specific patterns. This might be accomplished by one of a
number of mechanisms, such as reconstructing the intended artic-
ulatory movements of the vocal tract to identify speech sounds
as described by the motor theory of speech perception (Liber-
man et al., 1967; Liberman, 1996), explicitly extracting vocal tract
dimensions from the carrier phrase to rescale perception of sub-
sequent speech sounds (McGowan, 1997; McGowan and Cushing,
1999), or creating an internal vocal tract model against which
to compare ambiguous sounds to a set of possible targets (Halle
and Stevens, 1962; Poeppel et al., 2008). Each of these strategies
relies on explicit representation of some type of vocal tract-specific
information. A challenge for these accounts is that it is notoriously
difficult to solve the inverse problem of determining a unique vocal
tract shape from speech acoustics (Atal et al., 1978) and there is
currently no good model of how listeners would retrieve the neu-
tral vocal tract from speech that does not explicitly include an
instance of a neutral production.

Recent studies in context-dependent auditory perception sug-
gest that carrier phrases may provide an alternative type of infor-
mation that is neither explicitly phonemic nor linked to speech
production, but that may contribute to talker normalization effects
in speech perception (Holt, 2005, 2006; Huang and Holt, 2009,
2012). These experiments mirrored the Ladefoged and Broadbent
paradigm in that context sounds preceded speech targets. How-
ever, the contexts were not speech phrases, but rather a sequence of
21 non-speech sine-wave tones whose frequencies were sampled
from one of two distributions. The resulting sounds were some-
thing like a simple tune. The mean of the distribution of tones was
either a relatively high-frequency (mean 2800 Hz, 2300–3300 Hz
range) or low-frequency (mean 1800 Hz, 1300–2300 Hz range).
When these tone sequences preceded target speech sounds drawn
from a series varying perceptually from /ga/ to /da/, speech catego-
rization was influenced by the distribution from which the context
tones had been drawn. Tones with a higher mean frequency led
to more /ga/ responses, whereas the same targets were more often
categorized as /da/ when lower-frequency tones preceded them.

Of note in interpreting the results, the tones comprising the
context were randomly ordered on a trial-by-trial basis. Thus, each
context stimulus was unique, and only the long-term average spec-
trum (LTAS, the distribution of acoustic energy across frequency

for the entire duration of the tone sequence) defined conditions.
The distributional nature of the contexts in these studies indicates
that auditory processing is sensitive to the LTAS of context stim-
uli and that perception of target speech sounds is relative to, and
spectrally contrastive with, the LTAS. These results are consistent
with demonstrations that speech categorization shifts when the
LTAS of the carrier phrase is changed by applying a filter (Watkins,
1991; Watkins and Makin, 1994, 1996; Kiefte and Kluender, 2008),
spectral tilt (Kiefte and Kluender, 2001), or reverberation (Watkins
and Makin, 2007). They are also consonant with findings of clas-
sic adaptation effects on phoneme categorization (e.g., Eimas and
Corbit, 1973; Diehl et al., 1978; Sawusch and Nusbaum, 1979; Lotto
and Kluender, 1998) in that both effects are spectrally contrastive,
but the tone sequence effects differ in their time course, persist-
ing across silences as long as 1.3 s, and even across intervening
spectrally neutral sound (Holt and Lotto, 2002; Holt, 2005).

Holt (2005) and Lotto and Sullivan (2007) have speculated
that the general auditory processes underlying these effects may
prove useful for talker normalization. To put this into the context
of the classic talker normalization effects reported by Ladefoged
and Broadbent (1957), consider the acoustic consequences of long
versus short vocal tracts. A talker with a long vocal tract pro-
duces speech with relatively greater low-frequency energy than
a talker with a shorter vocal tract. In line with the pattern of
spectral contrast described above, listeners’ sensitivity to the lower-
frequency energy in the LTAS of the longer-vocal tract talker’s
speech should result in target speech being perceived as relatively
higher-frequency. Applying this prediction to the stimulus scheme
of Ladefoged and Broadbent, constant vowel targets should be
more often perceived as “bet ” following a phrase synthesized to
mimic a long vocal tract (“bet” is characterized by higher for-
mant frequencies than “bit”) whereas a phrase mimicking a talker
with a shorter vocal tract should lead listeners to label the same
speech targets more often as “bit.” These are, in fact, the results of
Ladefoged and Broadbent (1957). Thus, the analogy between the
non-speech context results of Holt (2005, 2006) and talker nor-
malization carrier phrase effects appears compelling, but explicit
comparison of these two types of effects has not been made. In
particular, talker normalization effects have been typically demon-
strated with shifts in vowel categorization, whereas the non-speech
categorization tasks have typically utilized consonant contrasts
as targets. In addition, there has not been an effort to match
speech and non-speech contexts on duration, frequency ranges,
and other acoustic dimensions. As a result, to this point, the pro-
posal of an LTAS account of talker normalization has primarily
been supported through analogy.

The purpose of the present study is to test three predictions of
an LTAS-based model of talker normalization (Lotto and Sullivan,
2007). The first prediction is that the direction of the shift in tar-
get phoneme categorization is predictable from a comparison of
the LTAS of the carrier phrase and the spectrum of the targets. In
particular, carrier phrases with higher-frequency concentrations
of energy should result in target representations that are shifted
to lower-frequency concentrations of energy; a spectral contrast
effect (Lotto and Holt, 2006).

The second prediction is that not all talkers will elicit nor-
malization for all speech targets. The LTAS model makes specific
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predictions about which talkers will produce perceptual normal-
ization effects, and which will not. Although the Ladefoged and
Broadbent findings are foundational in the talker normalization
literature, they have a reputation for being difficult to replicate
(Hawkins, 2004). We suspect that this may arise because it may
not be sufficient to simply change the talker of the carrier phrase
if the relationship between LTAS of target and carrier phrase is not
matched. We predict that pairs of talkers who vary in LTAS in the
range of frequencies important for target speech categorization
(e.g., in the vicinity of F3 for /ga/-/da/ consonant targets) will pro-
duce target speech categorization shifts typical of the Ladefoged
and Broadbent results but that LTAS differences outside this range
will produce highly discriminable talkers that do not elicit “talker
normalization” effects.

The final prediction of the LTAS model to be tested is that
similar shifts in target categorization will be elicited from non-
speech contexts to the extent that the LTAS is matched to the
speech contexts (in the relevant frequency region). Such a result
would strongly suggest general auditory, as opposed to vocal tract-
representation or acoustic-phonemic based, mechanisms of talker
normalization, because the non-speech contexts carry no infor-
mation about vocal tract anatomy, talker identity, neutral vowel
patterns, or phoneme identity. Should non-speech contexts influ-
ence speech target categorization when listeners have no access to
articulatory referents, it would provide evidence for contributions
of general auditory processes to talker normalization.

MATERIALS AND METHODS
PARTICIPANTS
Twenty volunteers from Carnegie Mellon University and the Uni-
versity of Pittsburgh participated for a small payment. All listen-
ers reported normal hearing, were native monolingual English
speakers, and provided written informed consent to participate.

The experiment was approved by the Carnegie Mellon Univer-
sity Institutional Review Board.

STIMULI
Speech targets
Nine speech target stimuli were derived from natural /ga/ and
/da/ recordings from a monolingual male native English speaker
(Computer Speech Laboratory, Kay Elemetrics, Lincoln Park, NJ,
USA; 20-kHz sampling rate, 16-bit resolution) and were identi-
cal to those utilized in several earlier studies (Holt, 2005, 2006;
Wade and Holt, 2005). To create the nine-step series, multiple
natural productions of the syllables were recorded and, from this
set, one /ga/ and one /da/ token were selected that were nearly
identical in spectral and temporal properties except for the onset
frequencies of F2 and F3. Linear predictive coding (LPC) analy-
sis was performed on each of the tokens to determine a series
of filters that spanned these endpoints (Analysis-Synthesis Lab-
oratory, Kay Elemetrics) such that the onset frequencies of F2
and, primarily, F3 varied approximately linearly between /ga/ and
/da/ endpoints. These filters were excited by the LPC residual of
the original /ga/ production to create an acoustic series spanning
the natural /ga/ and /da/ endpoints in approximately equal steps.
Creating stimuli in this way provides the advantage of very natural-
sounding speech tokens. These 411-ms speech series members

served as categorization targets. Figure 1B shows spectrograms
for the endpoints of the series, appended to two different types of
context. The top spectrogram depicts the /ga/ endpoint whereas
the bottom spectrogram shows the /da/ endpoint. Notice that the
main difference between the targets is the onset F3 frequency.

Context stimuli: speech
The speech targets were preceded by one of eight context stim-
uli. Four of these contexts were the phrase “Please say what this
word is. . .,” mimicking the contexts studied by Ladefoged and
Broadbent (1957). Variants were synthesized to sound as though
the phrase was spoken by four different talkers. This was accom-
plished by raising or lowering the formant frequencies in either the
region of the F1 or F3. To create the voices, a 1700-ms phrase was
generated by extracting formant frequencies and bandwidths from
recording a male voice reciting“Please say what this word is. . .,”and
using these values to synthesize the phrase in the parallel branch
of the Klatt and Klatt (1990) synthesizer. The phrase created with
these natural parameters was spectrally manipulated by adjusting
formant center frequencies and bandwidths to create the different
“talkers.” These manipulations resulted in two independent vari-
ables: context frequency peak (High, Low) and context frequency
range (F1, F3).

The context frequency peak manipulation arises from previous
research, indicating that context effects in speech categorization
are spectrally contrastive (e.g., Lotto and Kluender, 1998; Holt,
2005; Lotto and Holt, 2006). Lower-frequency contexts shift cat-
egorization responses toward higher-frequency alternatives (e.g.,
/da/) whereas higher-frequency contexts shift responses toward
lower-frequency alternatives (e.g., /ga/). Figure 2B plots the LTAS
for /ga/ and /da/ endpoint speech targets, demonstrating that the
tokens are maximally distinctive at two areas within the F3 fre-
quency range (approximately 1800 and 2800 Hz). Thus, following
the hypotheses of the LTAS model, one “talker” was synthesized to
possess relatively higher-frequency energy in the F3 region with
a peak in energy at about 2866 Hz. Another “talker” was cre-
ated with relatively lower-frequency F3 energy peaking at about
1886 Hz. This manipulation is very similar to the type used by
Ladefoged and Broadbent (1957) to synthesize talker differences
in their classic study, although they manipulated only F1 and F2
frequencies.

A similar manipulation was made in the F1 frequency region
to create two additional synthesized voices. The peak frequen-
cies in this region were chosen to match the perceptual distance
of the High and Low peaks and bandwidths in the F3 frequency
region (equating the peak frequency difference on the Mel scale, a
psychoacoustic scale that may better model the non-linear charac-
teristics of human auditory processing along the frequency dimen-
sion than the linear Hz scale; Stevens et al., 1937). This resulted in
phrases with peaks in the LTAS at 318 Hz for the lower-frequency
context and 808 Hz for the higher-frequency context.

The context frequency range manipulation (F1 versus F3) pro-
vided a test of the hypothesis that context-dependent speech cat-
egorization characterized as “talker normalization” is sensitive to
spectral differences in the region of the spectra relevant to target
speech categorization. Although both F1 and F3 manipulations
are expected to produce discriminable differences in perceived
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FIGURE 1 | (A) Schematic illustration of stimulus construction; (B) Spectrograms of non-speech context followed by /ga/ (top) and speech context followed by
/da/ (bottom).

FIGURE 2 | (A) Long-term average spectra (LTAS) of representative context stimuli from each condition; (B) LTAS of speech target endpoints /ga/ and /da/.

talker, the LTAS model predicts that spectral peak differences in
the region of F3 should influence categorization of /ga/-/da/ exem-
plars because F3 is critical to the /ga/-/da/ distinction. However,
spectral peak differences in the region of F1 are predicted to have
no influence on /ga/-/da/ categorization. Figure 1B presents rep-
resentative spectrograms and Figure 2A shows the LTAS of each
voice. Pairing these four contexts with the nine speech targets
resulted in 36 unique stimuli; each was presented 10 times in the
experiment, for a total of 360 speech context trials. Speech stim-
uli were sampled at 11,025 Hz and converted to ∗.wav files using
MATLAB (Mathworks, Inc.).

Context stimuli: non-speech
Following the methods of Holt (2005), four non-speech con-
texts comprised of sequences of sine-wave tones with frequencies
chosen to mirror the Low and High-frequency peaks in the F1
and F3 regions of the speech contexts’ LTAS were also synthe-
sized. Figure 2A shows the LTAS of these tone sequences. Note
that, whereas the LTAS of sentence contexts are somewhat dif-
ficult to manipulate because speech inherently possesses energy
across the frequency spectrum, non-speech contexts are more eas-
ily controlled with explicit placement of sine-wave tones. Thus,
for the non-speech contexts acoustic energy may be focused on
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precisely the spectral regions predicted to have (or not to have) an
effect on target /ga/-/da/ categorization. This may have important
implications for the magnitude of the influence of speech versus
non-speech contexts on speech categorization, as discussed below.

These sequences of tones, similar to those described by Holt
(2005), did not sound like speech and did not possess articulatory
or talker-specific information. Seventeen 70-ms tones (5 ms linear
onset/offset amplitude ramps) with 30 ms silent intervals mod-
eled the 1700-ms duration of the speech contexts. As in previous
experiments (Holt, 2005, 2006; Huang and Holt, 2009), the order
of the tones making up the non-speech contexts was randomized
on a trial-by-trial basis to minimize effects elicited by any particu-
lar tone ordering. Thus, any influence of the non-speech contexts
on the speech categorization is indicative of listeners’ sensitivity
to the LTAS of the context and not merely to the simple acoustic
characteristics of any particular segment of the tone sequence.

The bandwidth of frequency variation was approximately
matched to the bandwidth of the peak in the corresponding speech
context’s LTAS, as measured 10 dB below the peak. The low-
frequency F1 range distribution sampled 150 Hz in 10 Hz steps
(mean 200 Hz, 125–275 Hz range), and the high-frequency F1
range distribution sampled 240 Hz in 16 Hz steps (mean 750 Hz,
range 630–870 Hz). The low-frequency F3 range distribution sam-
pled 435 Hz in 29 Hz steps (mean 1873.5 Hz, range 1656–2091 Hz),
and the high-frequency F3 range distribution sampled 570 Hz in
38 Hz steps (mean 2785 Hz, range 2500–3070 Hz).

Tones comprising the non-speech contexts were synthesized
with 16-bit resolution, sampled at 11,025 Hz, and concatenated
to form random orderings. Ninety unique contexts were created
so that each non-speech context could be paired with each of the
nine speech targets 10 times. Across the four non-speech LTAS
conditions, this resulted in 360 unique stimuli.

All speech and non-speech contexts and speech targets were
digitally matched to the RMS energy of the /da/ endpoint of the tar-
get speech series, and a 50-ms silent interval separated the context
and the speech target. Figure 1A provides a schematic illustration
of stimulus construction and Figures 1B and 2A show spectro-
grams and LTAS of representative stimuli from each condition.
The LTAS of the speech target series endpoints, /ga/ and /da/, are
shown in Figure 2B.

PROCEDURE
Listeners categorized the nine speech targets in each of the eight
contexts. Trials were divided into four blocks so that listeners heard
higher- and lower-frequency versions of each context condition
[2 (speech/non-speech)× 2 (LTAS peak in F1 region/F3 region)]
within the same block. The order of the blocks was fully counter-
balanced across participants and, within a block, trial order was
random. On each trial, listeners heard a context plus speech target
stimulus and categorized the speech target as /ga/ or /da/ using
buttons on a computer keyboard.

The categorization blocks were followed by a brief discrimina-
tion test to measure the extent to which manipulations of the LTAS
were successful in producing perceived talker differences among
the speech contexts. On each trial, participants heard a pair of
context sentences and judged whether the voice speaking the sen-
tences was the same or different by pressing buttons on a computer

keyboard. The task was divided into two blocks according to the
LTAS peak region (F1 versus F3). Within a block, listeners heard
both higher-frequency and lower-frequency versions of the sen-
tences across 20 randomly ordered trials. One-half of the trials
were different talker pairs (High-Low or Low-High, five repetitions
each) and the remaining trials were identical voices (High-High,
Low-Low, five repetitions each).

For both speech categorization and talker discrimination tests,
acoustic presentation was under the control of E-Prime (Schnei-
der et al., 2002) and stimuli were presented diotically over linear
headphones (Beyer DT-150) at approximately 70 dB SPL (A). The
experiment lasted approximately 1 h.

RESULTS
The results of the talker discrimination task indicate that the syn-
thesized voices were highly discriminable as different talkers (F1
manipulation d ′= 3.46; F3 manipulation d ′= 3.09). Moreover,
participants’ ability to discriminate talkers did not differ for talkers
created with manipulations to LTAS in the F1 versus F3 frequency
regions, t (19)= 1.603, p= 0.126. Thus, there is sufficient informa-
tion available in the synthesized speech contexts to support talker
identity judgments and this information does not differ depending
on whether voices were synthesized via spectral manipulations of
F1 versus F3 spectral regions. Each might be reasonably expected
to elicit talker normalization.

However, the results indicate that this was not the case. The
patterns of speech target categorization in the context of these
four talkers was assessed with a 2 (context frequency range, F1/F3
region)× 2 (context frequency, High/Low)× 9 (speech target,
/ga/-/da/) repeated-measures ANOVA of percent /ga/ responses.
The analysis revealed a significant main effect of speech target,
F(8, 152)= 130.196, p < 0.0001, η2

p = 0.873, indicating that /ga/
responses varied as intended across the speech targets. Higher-
order interactions involving speech target were also significant
(p < 0.05); however, since our predictions center on context-
dependent speech target categorization, the focus of interpretation
is placed on interactions that do not involve target. Figure 3
plots listeners’ average percent /ga/ categorization responses across
speech targets as a function of context.

Overall, there was a robust main effect of speech con-
text frequency (High, Low) on speech target categorization,
F(1, 19)= 34.66, p < 0.0001, η2

p = 0.646, such that stim-
uli were more often labeled as /ga/ following high-frequency
contexts (M = 68.3%, S.E.= 2.1%) than low-frequency contexts
(M = 63.4%, S.E.= 2.1%). This is consistent with the spectrally
contrastive pattern of results found for sentence-length contexts
in previous research (Holt, 2005, 2006; Huang and Holt, 2009)
and extends the original Ladefoged and Broadbent effects from
target vowels to target consonants. There was no main effect of
context frequency range, F < 1, indicating that the overall per-
cent /ga/ responses did not vary between F1 and F3 conditions.
Most importantly, however, context frequency (High, Low) signif-
icantly interacted with context range (F1, F3), F(1, 19)= 7.467,
p= 0.013, η2

p = 0282. Whereas the voice differences created by
high- versus low-frequency peaks in the F1 frequency range did not
elicit a significant shift in speech target categorization [1.9%, F(1,
19)= 1.717, p= 0.206, η2

p = 0.083], the F3 range conditions did
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FIGURE 3 | Mean percent-/ga/ categorization (1 SEM).

elicit a significant categorization shift [7.89%, F(1, 19)= 37.110,
p < 0.001, η2

p = 0661]. This is curious given that the voice dis-
crimination task revealed that voices created via F1 range spectral
manipulations were just as discriminable as different talkers as
those differing in the F3 frequency range. As described above,
however, the LTAS model predicts this pattern of results.

A stronger test of an LTAS-based account rests with the non-
speech contexts, which do not carry any speech or vocal tract
information from which to accomplish talker normalization and,
in fact, are perceived as sequences of non-linguistic tones. Qualita-
tively, the pattern of results for non-speech was very similar to that
obtained for speech contexts (Figure 3). The effect of non-speech
context frequency (High versus Low) was significant for the F3
range, F(1, 19)= 202.836, p < 0.0001, η2

p = 0.914, but not for the

F1 range, F(1, 19)= 2.862, p= 0.107, η2
p = 0.131. Non-speech

contexts elicited a shift in target categorization, but only when the
spectral manipulations were in the F3 region.

There is a significant difference between the influence speech
and non-speech contexts had on speech categorization that bears
note. The effect of speech versus non-speech contexts varied as
a function of context frequency (High, Low), F(1, 19)= 83.54,
p < 0.0001, η2

p = 0.815, revealing that the size of the spectrally
contrastive shift in speech target categorization differed across
context type. The directionality of this difference is interesting;
non-speech contexts had a bigger effect on speech categoriza-
tion. Whereas the speech contexts elicited about a 7% shift in
target categorization, the non-speech elicited a 38% shift. The dra-
matic difference in effect size may be understood with respect to
the LTAS differences between the speech and non-speech condi-
tions. Whereas, by necessity, speech contexts possess more diffuse
energy across the frequency spectrum, the non-speech contexts
had extremely concentrated energy in the spectral region sig-
nificant to target speech categorization. This concentration of
LTAS energy appears to be particularly effective in altering the
subsequent perception of speech.

DISCUSSION
The classic effect of context on speech categorization observed
by Ladefoged and Broadbent (1957) demonstrated that listeners
extract information from precursor phrases that affects catego-
rization of subsequent vowels. The nature of this information
has remained in question. Do listeners extract talker-specific rep-
resentations of vocal tract dimensions or of acoustic-phonemic
mappings for different talkers? The current study tested the pre-
dictions of an alternative model – that listeners compute a general
auditory representation of the average energy across frequency,
the LTAS. The LTAS then serves as a referent for representation for
subsequent perception. Three predictions of the LTAS model were
tested: (1) the direction of the shift in target categorizations would
be predictable from the distribution of energy in the carrier phrase
relative to that in the targets; (2) only manipulations to the carrier
phrase that affect relevant frequency ranges would result in cate-
gorization shifts; and (3) non-speech contexts matched in LTAS (in
the correct frequency range) to the speech contexts would result
in similar categorization shifts for speech targets.

The first prediction of the LTAS model was supported. Follow-
ing the carrier phrase (Please say what this word is. . .) synthesized
with higher F3 frequencies, listeners categorized the target stimuli
more often as /ga/, which has a lower F3 onset frequency than the
alternative /da/. This is a spectrally contrastive pattern of results for
which the greater relative energy in the higher-frequency region
of F3 in the LTAS of the carrier phrase results in an effective low-
ering of the perceived F3 of the target stimulus (see Lotto and
Holt, 2006). Note that this result extends the original findings of
Ladefoged and Broadbent from vowel to consonant targets. This
extension allows a clearer link to be made between talker nor-
malization effects and recent work on non-speech context effects
on speech perception (e.g., Lotto and Kluender, 1998; Holt, 2005;
Lotto and Holt, 2006). Note, that whereas this pattern of results
supports the predictions of the LTAS model, it does not rule out
a model based on vocal tract or phoneme-acoustic specific repre-
sentations. For example, if listeners were to track F3 values for each
consonant during the high-F3 carrier phrase to map the phonemic
space of a talker, the target would have a relatively low F3 onset
frequency when compared to these referents (and be more likely
perceived as a /ga/).

The second prediction of the LTAS model was also supported
by the data. Although each of the context phrase manipulations
resulted in a discriminably different voice, not all of the phrases
produced a shift in target categorization. As predicted, the F3
manipulation resulted in a categorization shift, but the F1 manipu-
lation, which is not in the range of the acoustic energy relevant for
the /ga/-/da/ distinction, did not. This implies that the observed
change in speech categorization was not based simply on a per-
ceived change in talker (or vocal tract shape) per se. Rather, a
particular task-relevant acoustic characteristic (F3 range) of talk-
ers seems to be the critical factor that drives the normalization
effect across conditions. It is reasonable to suspect that the sen-
sitivity of the effects to the F3 (and not F1) spectral range is
primarily due to its match to the range of frequencies discrim-
inating the target speech contrast. Supportive of this, experiments
have demonstrated that carrier phrases differentiated by energy in
other spectral ranges (e.g., F2; Holt and Lotto, 2002, fundamental
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frequency, f0; Huang and Holt, 2009, 2012) produce similar effects
on speech categorization if they match the spectral range rele-
vant to the target contrast. Other research has also emphasized the
importance of acoustic details of the context in predicting effects
of context on categorizing auditory targets (Sjerps et al., 2011).
A strength of the LTAS model is that it predicts which changes
in talker will result in shifts in categorization and which will not.
From the perspective of the spectral-based LTAS model, the target
contrast should only be affected by shifts in carrier phrase LTAS
if the spectral ranges of carrier and target are well-matched (Holt,
1999). Simply changing the talker of the context phrase does not
suffice – the listener clearly is not just using a shift in formant
values to recalibrate judgments about vocal tract size.

The third prediction of the LTAS was tested by substituting
a series of tones for the context phrases. The LTAS of these tone
sequences had high or low-frequency energy in the F1 or F3 regions
that were similar to the LTAS for the respective speech conditions,
but they sounded nothing like speech, and carried no informa-
tion about talker, voice, vocal tract anatomy, or phonemes. As
predicted, there was a significant contrastive shift in target cat-
egorization for the non-speech sequences that mimicked the F3
manipulations of the speech contexts (but no shift for the F1 region
tone sequences). In fact, the perceptual shift observed was greater
for the non-speech than the speech contexts. This difference was
likely due to the fact that the peaks in the LTAS for the non-speech
were greater in amplitude and more discrete than those of the
more acoustically complex sentences (see Figure 2A). The fact
that prominence and focus of the spectral peaks, rather than any
speech- or talker-specific characteristic, had the greatest effect on
speech categorization provides further evidence that the processes
and representations underlying these context-dependent effects
may be of a general perceptual nature. This generality allows the
LTAS model to extend naturally to other types of talker normal-
ization that do not originate at the segmental (phoneme, syllable)
level, such as normalization for lexical tone in tone languages (e.g.,
Leather,1983; Fox and Qi,1990; Moore and Jongman,1997; Huang
and Holt, 2009, 2012). Furthermore, the spectral-context-based
effects reported here are not constrained to the specific conso-
nant contrast (/g/ versus /d/) reported in the present study. Other
research has shown that categorization of vowel contrasts is shifted
by the LTAS of preceding context (Vitela et al., 2010; Huang and
Holt, 2012) and that categorization of Mandarin tones is shifted
by the average voice pitch (fundamental frequency, f0) in preced-
ing context (Huang and Holt, 2009, 2011). In these studies, the
effects were elicited by both speech and non-speech precursors
and were in the directions predicted by the LTAS model (spectrally
contrastive to the LTAS of preceding contexts).

The correspondence of the effects of speech and non-speech
contexts on speech categorization strongly implicates the involve-
ment general auditory mechanisms. One ubiquitous neural mech-
anism consistent with the contrastive shifts in perception observed
in these effects is neural adaptation (Harris and Dallos, 1979;
Smith, 1979; Carandini, 2000). In a pool of auditory neurons
encoding frequency, a precursor with a higher-frequency LTAS
would be better encoded by a particular subset of this pool. Hav-
ing fired robustly to the precursor, neural adaptation would predict

that this subset of neurons would exhibit decreased responsive-
ness to any subsequent stimuli. Thus, at the population level,
the encoding of the subsequent speech target would be shifted
relative to encoding in isolation or following a precursor with a
lower-frequency LTAS.

However, the present results are unlikely to arise from sensory
adaptation (e.g., at the level of the cochlea or auditory nerve)
because they persist even when non-speech contexts and speech
targets are presented to opposite ears (Holt and Lotto, 2002; Lotto
et al., 2003), when silent intervals between context and target pre-
clude peripheral interactions (Holt, 2005), and when spectrally
neutral sounds intervene between context and target (Holt, 2005).

Stimulus specific adaptation, a mechanism demonstrated in
inferior colliculus, thalamus, and cortex in the auditory system
(Ulanovsky et al., 2004; Perez-Gonzalez et al., 2005; Malmierca
et al., 2009; Antunes et al., 2010), may be a better candidate
than neural fatigue for supporting the LTAS-driven context effects
(Holt, 2006). Research on SSA suggests that auditory neurons track
statistical distributions of sounds across rather extended temporal
windows and modulate their responsiveness in reaction to this reg-
ularity such that responses to infrequent sounds are exaggerated.
Thus, SSA serves to enhance acoustic contrast, as observed in the
present behavioral results (see Holt, 2006 for further discussion).

An important aspect of the present results is the finding that
there is an interaction between the acoustic energy that elicits
spectral contrast effects and the range of spectral information
relevant for categorizing the speech targets; energy in the region
of F3 exerted an influence whereas lower-frequency F1 energy
did not. One possibility is that there may be limitations on the
spectral range across which a mechanism such as SSA is effective.
Another possibility is that there is a top-down, task-, or attention-
driven modulation of the frequency range distinguishing speech
targets (e.g., the F3 range, in the current experiment) such that
the effects of adaptive mechanisms in this range are enhanced (or,
conversely, the effects of adaptive mechanisms outside this range
are attenuated). The current data do not differentiate between
these possibilities and the accounts are not mutually exclusive.
Our understanding of neural mechanisms supporting the range-
specificity of context effects observed in the current data will
benefit from continued development of models of the interaction
between effects influencing perceptual encoding, such as adap-
tation, and top-down modulatory mechanisms (see Jääskeläinen
et al., 2011 for further discussion of such interactions).

The present findings do not suggest that LTAS is the only
information involved in talker normalization or phonetic con-
text effects. Listeners exhibit long-term effects of talker familiarity
(Nygaard and Pisoni, 1998), and speech processing can be influ-
enced even as a function of whether a listener imagines that speech
is produced by a male versus female talker (Johnson, 1990; Johnson
et al., 1999) or that there are one versus two talkers present (Mag-
nuson and Nusbaum, 2007). Whereas the present data demon-
strate talker-specific information is not necessary to observed shifts
in speech categorization, they do not preclude the possibility that
voice- or speech-specific processes (e.g., Belin et al., 2000) may
also contribute. These expectation-based and long-term memory
effects are not inconsistent with mechanisms that support LTAS
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effects. Rather, they are likely to complement talker normalization
through other information sources.

The flip-side of the question of how a general auditory process
affects speech processing is asking what purpose LTAS compu-
tations may serve in non-speech auditory perception, in gen-
eral. Lotto and Sullivan (2007) have proposed that sensitivity
to LTAS may be useful for noise reduction in natural environ-
ments. If noise sources such as babbling brooks and ceiling
fans have relatively constant spectra, then perception of sound
events (including speech) would be more efficient by determin-
ing the LTAS of the noise and subtracting it off or, equiva-
lently, using it as a reference so that all sounds are perceived
relative to their spectral change from the ambient sound envi-
ronment. Such a system would be very effective at dealing with
other structured variance in auditory signals such as the filter-
ing characteristics of communication channels (Watkins, 1991)

or the systematic acoustic differences among talkers. How signif-
icant a role this general process plays in speech communication
and other complex sound processing remains to be described,
but the data from the current experiment strongly support the
significance of the phenomenon in talker normalization, one
of the most enduring theoretical issues in speech perception
research.
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